M1 (h.m)
Description: calculate the "h" function.
Input arguments: h(s,c,n_{2}); argument s is the base parameter; c is the power parameter; n_{2} is the
number of summation terms for \sum\limits_{s=0}^{\infty }{h_{s}^{-c}} when s is a negative integer.
M2 (h1.m)
Description: calculate the "h" function with arbitrary precision.
Input arguments: h(s,c,pre); argument s is the base parameter; c is the power parameter; pre is the level of precision (number of singificant digits in matlab's vpa function).
M3 (difference.m)
Description: calculate an nth-order forward difference for the "h" function.
Input arguments: difference(s,c,order); s is the base parameter; c is the power parameter; order is the order of the forward difference.
M4 (hinv.m)
Description: calculate the inverse "h" function by numerical analysis.
Input arguments: hinv(k,s); k is the value of the "h" function; s is base parameter.
M5 (f1expo.m)
Description: specify the exponential integral function of the first order.
Input arguments: f1expo(x); x is the integral variable.
M6 (f5expo.m)
Description: specify the exponential integral function of the fifth order.
Input arguments: f5expo(x); x is the integral variable.
M7 (f10expo.m)
Description: specify the exponential integral function of the tenth order.
Input arguments: f10expo(x); x is the integral variable.
M8 (hbetainc.m)
Description: evaluate the incomplete beta function by using the "h" functions.
Input arguments: hbetainc(x,a,b,nbeta,pre); x is the random variable; a is parameter \alpha; b is
parameter \beta; nbeta is the number of expansions for calcutaing the incomplete beta function; pre is the level of precision
(number of singificant digits in matlab's vpa function).
M9 (hmQ.m)
Description: estimate the Marcum Q-function in "h" forms.
Input arguments: hmQ(a,b,m); a is parameter a; b is parameter b; m is parameter M.