Logo

Proof of Equation (4.9)

\begin{equation*}
B\left(\alpha,\beta\right)=\frac{{\exp(-C)}h_{\alpha-1}^{-C}h_{\beta -1}^{-C}}{h_{\alpha +\beta -1}^{-C}}.
\end{equation*}Proof:
\begin{align*}
B\left( \alpha ,\beta \right) &=\frac{\Gamma \left( \alpha \right)\Gamma \left( \beta \right)}{\Gamma \left( \alpha +\beta \right)} \\
& =\frac{{{C}^{\alpha }}\exp \left( -C \right)h_{\alpha -1}^{-C}{{C}^{\beta }}\exp \left( -C \right)h_{\beta -1}^{-C}}{{{C}^{\alpha +\beta }}\exp \left( -C \right)h_{\alpha +\beta -1}^{-C}} \\
& =\frac{\exp (-C)h_{\alpha -1}^{-C}h_{\beta -1}^{-C}}{h_{\alpha +\beta -1}^{-C}}.
\end{align*}
$\square$

Download [full paper] [supplementary materials] [.m files] [technical note]