Logo

Proof of Equation (4.5)

\begin{equation*}
{{E}_{\left(1\right)}}\left(x;C,t\right)=\log\left|\frac{C}{x} \right|+\sum\limits_{s=0}^{t}{\left( h_{s}^{C}-h_{s}^{x} \right)}.
\end{equation*}Proof:

Given we know the fact
\begin{align*}
{{E}_{\left( 1 \right)}}\left( x;C \right)&=\int_{x}^{C}{{{t}^{-1}}\exp \left( -t \right)}dt \\
& =\exp \left( -t \right)h_{-1}^{-t}|_{x}^{C} \\
& =\exp \left( -C \right)h_{-1}^{-C}-\exp \left( -x \right)h_{-1}^{-x} \\
& =\left( \log \left| -C \right|+\sum\limits_{s=0}^{\infty }{h_{s}^{C}} \right)-\left( \log \left| -x \right|+\sum\limits_{s=0}^{\infty }{h_{s}^{x}} \right), \\
\end{align*}
if we use $t$ negative subtracting terms to evaluate ${{E}_{\left( 1 \right)}}\left( x;C \right)$,
\begin{align*}
{{E}_{\left( 1 \right)}}\left( x;C,t \right)&=\left( \log \left| -C \right|+\sum\limits_{s=0}^{t}{h_{s}^{C}} \right)-\left( \log \left| -x \right|+\sum\limits_{s=0}^{t}{h_{s}^{x}} \right) \\
& =\log \left| \frac{C}{x} \right|+\sum\limits_{s=0}^{t}{\left( h_{s}^{C}-h_{s}^{x} \right)}.
\end{align*}
$\square$

Download [full paper] [supplementary materials] [.m files] [technical note]