Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (4.5)

\begin{equation*} {{E}_{\left(1\right)}}\left(x;C,t\right)=\log\left|\frac{C}{x} \right|+\sum\limits_{s=0}^{t}{\left( h_{s}^{C}-h_{s}^{x} \right)}. \end{equation*}
Proof:

Given we know the fact
\begin{align*} {{E}_{\left( 1 \right)}}\left( x;C \right)&=\int_{x}^{C}{{{t}^{-1}}\exp \left( -t \right)}dt \\ & =\exp \left( -t \right)h_{-1}^{-t}|_{x}^{C} \\ & =\exp \left( -C \right)h_{-1}^{-C}-\exp \left( -x \right)h_{-1}^{-x} \\ & =\left( \log \left| -C \right|+\sum\limits_{s=0}^{\infty }{h_{s}^{C}} \right)-\left( \log \left| -x \right|+\sum\limits_{s=0}^{\infty }{h_{s}^{x}} \right), \\ \end{align*}


if we use t negative subtracting terms to evaluate {{E}_{\left( 1 \right)}}\left( x;C \right),
\begin{align*} {{E}_{\left( 1 \right)}}\left( x;C,t \right)&=\left( \log \left| -C \right|+\sum\limits_{s=0}^{t}{h_{s}^{C}} \right)-\left( \log \left| -x \right|+\sum\limits_{s=0}^{t}{h_{s}^{x}} \right) \\ & =\log \left| \frac{C}{x} \right|+\sum\limits_{s=0}^{t}{\left( h_{s}^{C}-h_{s}^{x} \right)}. \end{align*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]