Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (4.2)

\begin{equation*} {{E}_{(n)}}\left( x \right) ={{x}^{n-1}}\int_{x}^{\infty }{{{t}^{-n}}{\exp(-t)}dt}. \end{equation*}
Proof:
Using the transformation of variables, we derive
\begin{align*} {{E}_{(n)}}\left(x\right) & =\int_{1}^{\infty }{\frac{\exp \left( -xt \right)}{{{t}^{n}}}}dt \\& =\int_{x}^{\infty }{{{x}^{n-1}}\frac{\exp \left( -u \right)}{{{u}^{n}}}}du \\ & ={{x}^{n-1}}\int_{x}^{\infty }{{{t}^{-n}}\exp \left( -t \right)}dt. \end{align*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]