Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (4.13)

\begin{equation*} {{M}_{x}}\left( t \right)=\frac{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}{2D}\exp \left( \mu t +\frac{{{\sigma }^{2}}{{t}^{2}}}{2}-\frac{{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)h_{\tfrac{-1}{2}}^{\frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}}}{\Bigr|}_{a}^{b} \end{equation*}
Proof:
The moment-generating function {{M}_{x}}\left( t \right) is the Laplace Transform of f\left( x \right)
\begin{align*} E\left( {{e}^{tx}} \right)= &\int_{a}^{b}{{{e}^{tx}}}f\left( x \right)dx \\ & =\int_{a}^{b}{\exp \left( tx \right)}\frac{\exp \left( \frac{-{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}} \right)}{D}dx \\ & =\frac{1}{D}\int_{a}^{b}{\exp \left( \frac{-{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}}+tx \right)dx} \\ & =\frac{\exp \left( \mu t+\frac{{{\sigma }^{2}}{{t}^{2}}}{2} \right)}{D}\int_{a}^{b}{\exp \left( \frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)dx} \end{align*}

We evaluate \int_{a}^{b}{\exp \left( \frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)dx} first.
Let u=\frac{x-\left( \mu +{{\sigma }^{2}}t \right)}{\sqrt{2}\sigma } and du=\frac{dx}{\sqrt{2}\sigma }.
\begin{align*} &\int_{a}^{b}{\exp \left( \frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)dx} \\ =&\sqrt{2}\sigma \int_{\frac{a-\left( \mu +{{\sigma }^{2}}t \right)}{\sqrt{2}\sigma }}^{\frac{b-\left( \mu +{{\sigma}^{2}}t \right)}{\sqrt{2}\sigma }}{\exp \left( -{{u}^{2}} \right)du} \\ =&\sqrt{2}\sigma \left\{ \frac{x-\left( \mu +{{\sigma }^{2}}t \right)}{2\sqrt{2}\sigma }\exp \left( \frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)h_{\tfrac{-1}{2}}^{\frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}}}{\Bigr|}_{a}^{b} \right\} \\ = &\frac{x-\left( \mu +{{\sigma }^{2}}t \right)}{2}\exp \left( \frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)h_{\tfrac{-1}{2}}^{\frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}} {2{{\sigma }^{2}}}}{\Bigr|}_{a}^{b} \\ \end{align*}

Therefore, we derive the moment-generating function
\begin{equation*} {{M}_{x}}\left( t \right)=\frac{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}{2D}\exp \left( \mu t+\frac{{{\sigma }^{2}}{{t}^{2}}}{2}-\frac{{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}} \right)h_{\tfrac{-1}{2}}^{\frac{-{{\left[ x-\left( \mu +{{\sigma }^{2}}t \right) \right]}^{2}}}{2{{\sigma }^{2}}}}{\Bigr|}_{a}^{b} \end{equation*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]