Proof of Equation (3.6)
\begin{equation*}
h_{s}^{p{{q}^{-1}}}=h_{s}^{p}+p\left( 1-{{q}^{-1}} \right)\sum\limits_{i=0}^{\infty }{\frac{{{\left( -p{q}^{-1}
\right)}^{i}}}{\prod\limits_{j=0}^{i}{\left( s+1+i \right)}}{{h}_{s+1+i}^{p}}}.
\end{equation*}
Proof:
Replacing $q$ with $q^{-1}$ in the multiplication formula
(3.5), we can derive
the division formula.
$\square$