Loading Web-Font TeX/Main/Regular
Logo

Proof of Equation (3.2)

\begin{align*} {}^{-1}{{h}_{s}}\left( \delta \right) =&-\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right] \label{eq:q19} \\ \notag &+\frac{1}{\left( s+3 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right]}^{2}}\\ \notag &-\frac{s+5}{{{\left( s+3 \right)}^{2}}\left( s+4 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right]}^{3}} \\ \notag &+\frac{{{s}^{2}}+11s+34}{{{\left( s+3 \right)}^{3}}\left( s+4 \right)\left( s+5 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right]}^{4}}+\cdots. \notag \end{align*}
Proof:
Given (2.1), we know
\begin{equation*} \delta =h_{s}^{c}=\frac{1}{\left( s+1 \right)}+\frac{{{\left( -c \right)}^{1}}}{\left( s+1 \right)\left( s+2 \right)}+\frac{{{\left( -c \right)}^{2}}}{\left( s+1 \right)\left( s+2 \right)\left( s+3 \right)}+\cdots. \end{equation*}

Therefore,
\begin{equation*} \left( s+1 \right)\left( s+2 \right)\delta -\left( s+2 \right)={{\left( -c \right)}^{1}}+\frac{{{\left( -c \right)}^{2}}}{\left( s+3 \right)}+\frac{{{\left( -c \right)}^{3}}}{\left( s+3 \right)\left( s+4 \right)}\cdots. \end{equation*}

To find the inverse function of "h", {}^{-1}{{h}_{s}}\left( \delta \right), we need to use \left[\left( s+1 \right)\left( s+2 \right)\delta -\left( s+2 \right)\right] as the core function to construct a power function, with which the final results is c.
For instance, the coefficient of the first term of the power function is -1, since the result is c plus the remaining terms
\begin{equation*} -\left[ \left( s+1 \right)\left( s+2 \right)\delta -\left( s+2 \right) \right]={c}-\frac{{{c}^{2}}}{\left( s+3 \right)}+\frac{{{c}^{3}}}{\left( s+3 \right)\left( s+4 \right)}\cdots. \end{equation*}

Next, we will construct a second-order power term with the core function to eliminate the remaining term which has the same order. The result is
\begin{equation*} \frac{1}{\left( s+3 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta -\left( s+2 \right) \right]}^{2}}=\frac{{{c}^{2}}}{\left( s+3 \right)}-\frac{2{{c}^{3}}}{{{\left( s+3 \right)}^{2}}}+\left[ \frac{2{{c}^{4}}}{{{\left( s+3 \right)}^{2}}\left( s+4 \right)}+\frac{{{c}^{4}}}{{{\left( s+3 \right)}^{3}}} \right]+\cdots \end{equation*}

The leading term will cancel out the first remaining term and generates new remaining terms
\begin{align*} & -\left[ \left( s+1 \right)\left( s+2 \right)\delta -\left( s+2 \right) \right]+\frac{1}{\left( s+3 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta -\left( s+2 \right) \right]}^{2}} \\ & ={{c}^{1}}+\left[ -\frac{2{{c}^{3}}}{{{\left( s+3 \right)}^{2}}}+\frac{{{c}^{3}}}{\left( s+3 \right)\left( s+4 \right)} \right]\\ &+\left[ \frac{2{{c}^{4}}}{{{\left( s+3 \right)}^{2}}\left( s+4 \right)}+\frac{{{c}^{4}}}{{{\left( s+3 \right)}^{3}}}-\frac{{{c}^{4}}}{\left( s+3 \right)\left( s+4 \right)\left( s+5 \right)} \right]+\cdots. \end{align*}

Repeating the same process, we can derive the inverse function of "h"
\begin{align*} {}^{-1}{{h}_{s}}\left( \delta \right) =&-\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right] \\ \notag &+\frac{1}{\left( s+3 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right]}^{2}}\\ \notag &-\frac{s+5}{{{\left( s+3 \right)}^{2}}\left( s+4 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right]}^{3}} \\ \notag &+\frac{{{s}^{2}}+11s+34}{{{\left( s+3 \right)}^{3}}\left( s+4 \right)\left( s+5 \right)}{{\left[ \left( s+1 \right)\left( s+2 \right)\delta-\left( s+2 \right) \right]}^{4}}+\cdots. \notag \end{align*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]