Proof of Equation (3.11)
\begin{equation*}
\int_{{}}^{(n)}h_{s}^{c}dc={{\left( -1 \right)}^{n}}\sum\limits_{i=0}^{\infty }{{i+n-1 \choose i}
h_{s+i}^{c}}.
\end{equation*}Proof:
Given the first-order antiderivative formula of $h_{s}^{c}$ with respect to $c$, we can derive the second-order furmula as
\begin{align*}
\int_{{}}^{\left( 2 \right)}{h_{s}^{c}dc}&=-\int{h_{s}^{c}dc}-\int{h_{s+1}^{c}dc}-\int{h_{s+2}^{c}dc}-\cdots \\
& =\left( h_{s}^{c}+h_{s+1}^{c}+h_{s+2}^{c}+h_{s+3}^{c}+\cdots \right) \\
& +\left( h_{s+1}^{c}+h_{s+2}^{c}+h_{s+3}^{c}+h_{s+4}^{c}+\cdots \right) \\
& +\left( h_{s+2}^{c}+h_{s+3}^{c}+h_{s+4}^{c}+h_{s+5}^{c}+\cdots \right) \\
& +\cdots \\
& ={{\left( -1 \right)}^{2}}\sum\limits_{i=0}^{\infty }\binom {i+1}{i}h_{s+i}^{c}.
\end{align*}
Repeating the first-order antiderivative formula $n$ times, we derive
\begin{equation*}
\int_{{}}^{(n)}h_{s}^{c}dc={{\left( -1 \right)}^{n}}\sum\limits_{i=0}^{\infty }{{i+n-1 \choose i}
h_{s+i}^{c}}.
\end{equation*}
$\square$