Loading Web-Font TeX/Size2/Regular
Logo

Proof of Equation (3.10)

\begin{equation*} \int{h_{s}^{c}dc=-\sum\limits_{i=0}^{\infty }{h_{s+i}^{c}}}. \end{equation*}
Proof:
Given the first-order partial derivative formula of h_{s}^{c} with respect to c, we know
\begin{equation*} \int{h_{s}^{c}dc}=\int{h_{s+1}^{c}dc-}h_{s}^{c}. \end{equation*}

We can apply this formula infinite times and sum all the terms in the left-hand and right-hand sides. All the integral terms will cancel out, except \int{h_{s}^{c}dc} and \int{h_{s+n+1}^{c}dc}.
\begin{align*} \int{h_{s}^{c}dc}=&\int{h_{s+1}^{c}dc-}h_{s}^{c} \\ \int{h_{s+1}^{c}dc}=&\int{h_{s+2}^{c}dc-}h_{s+1}^{c} \\ \int{h_{s+2}^{c}dc}=&\int{h_{s+3}^{c}dc-}h_{s+2}^{c} \\ &\vdots \\ \int{h_{s+n}^{c}dc}=&\int{h_{s+n+1}^{c}dc-}h_{s+n}^{c}. \end{align*}

, where n\to \infty .

Since \underset{n\to \infty}{\mathop{\lim }}\,\int{h_{s+n+1}^{c}dc}\to 0,
\begin{equation*} \int{h_{s}^{c}dc=-\sum\limits_{i=0}^{\infty }{h_{s+i}^{c}}}. \end{equation*}


\square

Download [full paper] [supplementary materials] [.m files] [technical note]