Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (2.6)

\begin{equation*} h_{k-r}^{c}=\frac{\exp(-c)}{{{c}^{k+1}}}\sum\limits_{i=0}^{\infty }{{{r}^{i}}{{I}^{\left( i \right)}}\left( c,k \right)} \end{equation*}
Proof:
Give (2.5), we can express h_{k-r}^{c} as
\begin{align*} h_{k-r}^{c}=\exp \left( -c \right)&\left\{ \frac{{{c}^{0}}}{0!}\left[ {{\left( \frac{1}{k+1} \right)}^{1}}{{r}^{0}}+{{\left( \frac{1}{k+1} \right)}^{2}}{{r}^{1}}+{{\left( \frac{1}{k+1} \right)}^{3}}{{r}^{2}}+\cdots \right] \right. \\ & +\frac{{{c}^{1}}}{1!}\left[ {{\left( \frac{1}{k+2} \right)}^{1}}{{r}^{0}}+{{\left( \frac{1}{k+2} \right)}^{2}}{{r}^{1}}+{{\left( \frac{1}{k+2} \right)}^{3}}{{r}^{2}}+\cdots \right] \\ & +\frac{{{c}^{2}}}{2!}\left[ {{\left( \frac{1}{k+3} \right)}^{1}}{{r}^{0}}+{{\left( \frac{1}{k+3} \right)}^{2}}{{r}^{1}}+{{\left( \frac{1}{k+3} \right)}^{3}}{{r}^{2}}+\cdots \right] \\ & \left. +\cdots \right\}. \end{align*}

Sum all the terms by r^{i}, for example i=0, and the result is
\begin{align*} &\exp(-c)\left[ \frac{{{c}^{0}}}{0!}{{\left( \frac{1}{k+1} \right)}^{1}}{{r}^{0}}+\frac{{{c}^{1}}}{1!}{{\left( \frac{1}{k+2} \right)}^{1}}{{r}^{0}}+\frac{{{c}^{2}}}{2!}{{\left( \frac{1}{k+3} \right)}^{1}}{{r}^{0}}+\cdots \right] \\ =&\frac{\exp(-c)}{{{c}^{k+1}}}\left[ \frac{{{c}^{k+1}}}{0!\left( k+1 \right)}+\frac{{{c}^{k+2}}}{1!\left( k+2 \right)}+\frac{{{c}^{k+3}}}{2!\left( k+3 \right)}+\cdots \right] \\ =&\frac{\exp(-c)}{{{c}^{k+1}}}\int{{{c}^{k}}\exp \left( c \right)dc}. \end{align*}

For i=1, we derive
\begin{align*} & \exp(-c)\left[\frac{{{c}^{0}}}{0!}{{\left( \frac{1}{k+1} \right)}^{2}}r^{1}+\frac{{{c}^{1}}}{1!}{{\left( \frac{1}{k+2} \right)}^{2}}r^{1}+\frac{{{c}^{2}}}{2!}{{\left( \frac{1}{k+3} \right)}^{2}}r^{1}+\cdots \right] \\ =&\frac{\exp(-c)r^{1}}{{{c}^{k+1}}}\left[ \frac{{{c}^{k+1}}}{0!{{\left( k+1 \right)}^{2}}}+\frac{{{c}^{k+2}}}{1!{{\left( k+2 \right)}^{2}}}+\frac{{{c}^{k+3}}}{2!{{\left( k+3 \right)}^{2}}}+\cdots \right] \\ =&\frac{\exp(-c)r^{1}}{{{c}^{k+1}}}\int{\frac{\int{{{c}^{k}}\exp \left( c \right)dc}}{c}}dc. \end{align*}

Repeating the same operation by changing i, we can conclude
\begin{equation*} h_{k-r}^{c}=\frac{\exp(-c)}{{{c}^{k+1}}}\sum\limits_{i=0}^{\infty }{{{r}^{i}}{{I}^{\left( i \right)}}\left( c,k \right)}, \end{equation*}

where
\begin{equation*} {{I}^{\left( 0 \right)}}\left( c,k \right)=\int{{{c}^{k}}\exp \left( c \right)dc}, \end{equation*}

and
\begin{equation*} {{I}^{\left( i \right)}}\left( c,k \right)=\int{\frac{^{(i)}{\iddots}\,\int{\frac{{{I}^{\left( 0 \right)}}\left( c,k \right)}{c}}dc}{c}}dc. \end{equation*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]