Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (2.5)

\begin{equation*} h_{k-r}^{c}={\exp(-c)}\sum\limits_{i=0}^{\infty }{\left\{ \frac{{{c}^{i}}}{i!}\left[ \sum\limits_{j=0}^{\infty }{\frac{{{r}^{j}}}{{{\left( k+i+1 \right)}^{j+1}}}} \right] \right\}}. \end{equation*}
Proof:
Performing long division for {1}/{\left[ \left( k+1+i \right)-r \right]}, we derive
\begin{equation*} \frac{1}{\left( k+1+i \right)-r}=\frac{{{r}^{0}}}{\left( k+1+i \right)}+\frac{{{r}^{1}}}{{{\left( k+1+i \right)}^{2}}}+\frac{{{r}^{2}}}{{{\left( k+1+i \right)}^{3}}}+\cdots. \end{equation*}

Therefore,
\begin{align*} {{c}^{k+1-r}}{\exp(c)}h_{k-r}^{c}&={\exp(-c)}\sum\limits_{i=0}^{\infty }{\frac{{{c}^{i}}}{i!\left( k+1+i-r \right)}}\\ &={\exp(-c)}\sum\limits_{i=0}^{\infty }{\left\{ \frac{{{c}^{i}}}{i!}\left[ \sum\limits_{j=0}^{\infty }{\frac{{{r}^{j}}}{{{\left( k+i+1 \right)}^{j+1}}}} \right] \right\}}. \end{align*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]