Proof of Equation (2.4)
\begin{equation*}
h_{k-r}^{c}={\exp(-c)}\sum\limits_{i=0}^{\infty }{\frac{{{c}^{i}}}{i!\left( k+1+i-r \right)}}.
\end{equation*}
Proof:
We can construct the following identity by
(2.2)
\begin{equation*}
{{c}^{k+1-r}}{\exp(c)}h_{k-r}^{c}=g\left( k+1-r,1,c \right).
\end{equation*}
Therefore,
\begin{align*}
{{c}^{k+1-r}}{\exp(c)}h_{k-r}^{c}&=\frac{{{c}^{k+1-r}}}{0!\left( k+1-r \right)}+\frac{{{c}^{k+2-r}}}{1!\left( k+2-r
\right)}+\frac{{{c}^{k+3-r}}}{2!\left( k+3-r \right)}+\cdots \\
h_{k-r}^{c}&={\exp(-c)}\left\{ \frac{{{c}^{0}}}{0!\left( k+1-r \right)}+\frac{{{c}^{1}}}{1!\left( k+2-r
\right)}+\frac{{{c}^{2}}}{2!\left( k+3-r \right)}+\cdots \right\}\\
&={\exp(-c)}\sum\limits_{i=0}^{\infty }{\frac{{{c}^{i}}}{i!\left( k+1+i-r \right)}}.
\end{align*}
$\square$