Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (2.14)

\begin{equation*} {{w}_{i}}=\frac{\int_{0}^{c}{{{x}^{i}}\exp (-x)dx}}{\int_{0}^{\infty }{{{x}^{i}}\exp (-x)dx}} \end{equation*}
Proof:
From (2.10), we know {{w}_{i}}=1-\sum\limits_{j=0}^{i}{\frac{{{c}^{j}}\exp (-c)}{j!}}. We can respecify {{w}_{i}} as
\begin{equation*} {{w}_{i}}=\frac{i!-\sum\limits_{j=0}^{i}{\left( \frac{i!{{c}^{j}}\exp (-c)}{j!} \right)}}{i!}. \end{equation*}

The numerator is in fact the solution of the definite gamma integral with the lower and uppoer limits \left[ 0,c \right]
\begin{equation*} \int_{0}^{c}{{{x}^{i}}\exp (-x)dx}=i!-\sum\limits_{j=0}^{i}{\left( \frac{i!{{c}^{j}}\exp (-c)}{j!} \right)}. \end{equation*}

The factorial denominator is also the solution of the same integral, but with an infinite upper limit rather than c
\begin{equation*} \int_{0}^{\infty }{{{x}^{i}}\exp (-x)dx}=i!. \end{equation*}

Thus,
\begin{equation*} {{w}_{i}}=\frac{\int_{0}^{c}{{{x}^{i}}\exp (-x)dx}}{\int_{0}^{\infty }{{{x}^{i}}\exp (-x)dx}}. \end{equation*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]