Loading Web-Font TeX/Main/Regular
Logo

Proof of Equation (2.13)

\begin{equation*} \Gamma \left( -r+1 \right)=\frac{p}{p-q}\int_{0}^{\infty }{\exp (-{{x}^{\frac{p}{p-q}}})dx} \end{equation*}
Proof:
Given r \in \left( 0,1 \right), r={q}/{p}, and 0<q<p, we know
\begin{align*} \Gamma \left( -r+1 \right) &=\Gamma \left( \frac{p-q}{p} \right) \\ & =\int_{0}^{\infty }{{{t}^{\tfrac{-q}{p}}}\exp \left( -t \right)}dt. \end{align*}

Let t={{x}^{\tfrac{p}{p-q}}}, and we derive
\begin{equation*} dt=\frac{p}{p-q}{{x}^{\tfrac{q}{p-q}}}dx. \end{equation*}

By the transformation of variable, we can derive
\begin{equation*} \Gamma \left( -r+1 \right)=\frac{p}{p-q}\int_{0}^{\infty }{\exp \left( -{{x}^{\tfrac{p}{p-q}}} \right)}dx. \end{equation*}

\square

Download [full paper] [supplementary materials] [.m files] [technical note]