Proof of Equation (1.2)
\begin{equation*}
g(s,-1,u)=\frac{{{u}^{s}}}{0!\left( s \right)}-\frac{{{u}^{s+1}}}{1!\left( s+1 \right)}+\frac{{{u}^{s+2}}}{2!\left( s+2
\right)}-\frac{{{u}^{s+3}}}{3!\left( s+3 \right)}+\cdots.
\end{equation*}
Proof:
\begin{align*}
g(s,-1,u) =&\int{{{u}^{s-1}}\exp \left( -u \right)du} \\
=&\int{\left( \frac{{{u}^{s-1}}}{0!}-\frac{{{u}^{s}}}{1!}+\frac{{{u}^{s+1}}}{2!}-\frac{{{u}^{s+2}}}{3!}+\cdots \right)}du \\
=&\frac{{{u}^{s}}}{0!\left( s \right)}-\frac{{{u}^{s+1}}}{1!\left( s+1 \right)}+\frac{{{u}^{s+2}}}{2!\left( s+2
\right)}-\frac{{{u}^{s+3}}}{3!\left( s+3 \right)}+\cdots.
\end{align*}
$\square$