Loading Web-Font TeX/Math/Italic
Logo

Proof of Equation (1.2)

\begin{equation*} g(s,-1,u)=\frac{{{u}^{s}}}{0!\left( s \right)}-\frac{{{u}^{s+1}}}{1!\left( s+1 \right)}+\frac{{{u}^{s+2}}}{2!\left( s+2 \right)}-\frac{{{u}^{s+3}}}{3!\left( s+3 \right)}+\cdots. \end{equation*}
Proof:
\begin{align*} g(s,-1,u) =&\int{{{u}^{s-1}}\exp \left( -u \right)du} \\ =&\int{\left( \frac{{{u}^{s-1}}}{0!}-\frac{{{u}^{s}}}{1!}+\frac{{{u}^{s+1}}}{2!}-\frac{{{u}^{s+2}}}{3!}+\cdots \right)}du \\ =&\frac{{{u}^{s}}}{0!\left( s \right)}-\frac{{{u}^{s+1}}}{1!\left( s+1 \right)}+\frac{{{u}^{s+2}}}{2!\left( s+2 \right)}-\frac{{{u}^{s+3}}}{3!\left( s+3 \right)}+\cdots. \end{align*}
\square

Download [full paper] [supplementary materials] [.m files] [technical note]