Loading Web-Font TeX/Size2/Regular
Proof of Equation (1.1)
\begin{equation*}
\int{{\exp(-{{u}^{2}})}}du=\frac{1}{2}g\left( \frac{1}{2},-1,u^{2} \right).
\end{equation*}
Proof:
Let
t={{u}^{2}}, and hence
u={{t}^{1/2}} and
dt=2udu. Therefore,
\begin{align*}
\int{\exp \left( -{{u}^{2}} \right)du}&=\frac{1}{2}\int{{{t}^{-1/2}}\exp \left( -t \right)dt} \\
& =\frac{1}{2}g\left( \frac{1}{2},-1,t \right).
\end{align*}
We can replace
t with
u^{2} back and derive
\begin{equation*}
\int{{\exp(-{{u}^{2}})}}du=\frac{1}{2}g\left( \frac{1}{2},-1,u^{2} \right).
\end{equation*}
\square
() [] {}