Loading Web-Font TeX/Size2/Regular
Logo

Proof of Equation (1.1)

\begin{equation*} \int{{\exp(-{{u}^{2}})}}du=\frac{1}{2}g\left( \frac{1}{2},-1,u^{2} \right). \end{equation*}
Proof:
Let t={{u}^{2}}, and hence u={{t}^{1/2}} and dt=2udu. Therefore,
\begin{align*} \int{\exp \left( -{{u}^{2}} \right)du}&=\frac{1}{2}\int{{{t}^{-1/2}}\exp \left( -t \right)dt} \\ & =\frac{1}{2}g\left( \frac{1}{2},-1,t \right). \end{align*}

We can replace t with u^{2} back and derive
\begin{equation*} \int{{\exp(-{{u}^{2}})}}du=\frac{1}{2}g\left( \frac{1}{2},-1,u^{2} \right). \end{equation*}
\square

Download [full paper] [supplementary materials] [.m files] [technical note]