Through the transformation of variables, we can specify the error function, the complementary error function, and the
cumulative distribution function of the standard normal distribution into an "h" function
\begin{equation*}
\text{erf}\left( x \right)=\frac{x}{\sqrt{\pi }}{\exp(-{{x}^{2}})}h_{\tfrac{-1}{2}}^{-{{x}^{2}}},\tag{4.7}
\end{equation*}
[Proof for (4.7)]
\begin{equation*}
\text{erfc}\left(x\right)=1-\frac{x}{\sqrt{\pi }}{\exp(-{{x}^{2}})}h_{\tfrac{-1}{2}}^{-{{x}^{2}}}
\end{equation*}
\begin{equation*}
\Phi\left(x\right)=\frac{1}{2}\left[1+\frac{x}{\sqrt{2\pi }}{\exp(\tfrac{-{{x}^{2}}}{2})}h_{\tfrac{-1}{2}}^{\tfrac{-{{x}^{2}}}{2}}
\right].\tag{4.8}
\end{equation*}
[Proof for (4.8)]
Since the improper integral of the Gaussian function can be exactly analyzed, numerical error resulted from the choice of C does not apply to the three error functions. As the most widely used distribution, the error function is encountered when we integrate the probability of the normal distribution. We present the "h" formulas for eight related distribution functions, including the normal, inverse Gaussian, log-normal, logit-normal, half-normal, folded normal, Maxwell-Boltzmann, and Levy distributions.
C11 Normal distribution
\begin{equation*}
F\left( x;\mu ,\sigma \right) =\frac{1}{2}\left[ 1+\frac{x-\mu }{\sqrt{2\pi }\sigma }{\exp\left(-\tfrac{{{\left( x-\mu
\right)}^{2}}}{2{{\sigma }^{2}}}\right)}h_{\tfrac{-1}{2}}^{-\tfrac{{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}}} \right],
\end{equation*}
C12 Inverse Gaussian distribution
\begin{multline*}
F\left( x;\mu ,\lambda \right)=\frac{1}{2}\left[ 1+\sqrt{\frac{\lambda }{2\pi x}}\left( \frac{x}{\mu }-1 \right){\exp\left(\tfrac{-\lambda }{2x}{{\left( \tfrac{x}{\mu }-1 \right)}^{2}}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-\lambda }{2x}{{\left( \tfrac{x}{\mu }-1 \right)}^{2}}} \right] \\+\frac{1}{2}\exp \left( \frac{2\lambda }{\mu } \right)\left[ 1-\sqrt{\frac{\lambda }{2\pi x}}\left( \frac{x}{\mu }+1
\right){\exp\left(\tfrac{-\lambda }{2x}{{\left( \tfrac{x}{\mu }+1 \right)}^{2}}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-\lambda }{2x}{{\left(
\tfrac{x}{\mu }+1 \right)}^{2}}} \right],
\end{multline*}
C13 Log-normal distribution
\begin{equation*}
F\left( x;\mu ,\sigma \right)=\frac{1}{2}+\frac{\log x-\mu }{2\sqrt{2\pi }\sigma }{\exp\left(-\tfrac{{{\left( \log x-\mu
\right)}^{2}}}{2{{\sigma }^{2}}}\right)}h_{\tfrac{-1}{2}}^{-\tfrac{{{\left( \log x-\mu \right)}^{2}}}{2{{\sigma }^{2}}}},
\end{equation*}
C14 Logit-normal distribution
\begin{equation*}
F\left( x;\mu ,{{\sigma }^{2}} \right)=\frac{1}{2}\left[ 1+\frac{\text{logit}\left( x \right)-\mu }{\sqrt{2\pi }\sigma
}{\exp\left(\tfrac{-{{\left( \text{logit}\left( x \right)-\mu \right)}^{2}}}{2{{\sigma}^{2}}}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-{{\left(
\text{logit}\left( x \right)-\mu \right)}^{2}}}{2{{\sigma }^{2}}}} \right],
\end{equation*}
C15 Half-normal distribution
\begin{equation*}
F\left(x;\sigma\right)=\frac{x}{\sqrt{2\pi}\sigma
}{\exp\left(\tfrac{-{{x}^{2}}}{2{{\sigma}^{2}}}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-{{x}^{2}}}{2{{\sigma }^{2}}}},
\end{equation*}
C16 Folded normal distribution
\begin{equation*}
F\left( x;\mu ,\sigma \right)=\frac{1}{2}\left[ \frac{x+\mu }{\sqrt{2\pi }\sigma }{\exp\left(\tfrac{-{{\left( x+\mu
\right)}^{2}}}{2{{\sigma }^{2}}}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-{{\left( x+\mu \right)}^{2}}}{2{{\sigma }^{2}}}}+\frac{x-\mu
}{\sqrt{2\pi }\sigma }{\exp\left(\tfrac{-{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-{{\left( x-\mu \right)}^{2}}}{2{{\sigma }^{2}}}} \right],
\end{equation*}
C17 Maxwell-Boltzmann distribution
\begin{equation*}
F\left(x;a\right)=\frac{x}{\sqrt{2\pi}a}{\exp\left(\tfrac{-{{x}^{2}}}{2{{a}^{2}}}\right)}
h_{\tfrac{-1}{2}}^{\tfrac{-{{x}^{2}}}{2{{a}^{2}}}}-\sqrt{\frac{2}{\pi}}\frac{x{\exp\left(\tfrac{-{{x}^{2}}}{2{{a}^{2}}}\right)}}{a},
\end{equation*}
C18 Levy distribution
\begin{equation*}
F\left( x;\mu ,\alpha \right)=1-\sqrt{\frac{\alpha}{2\pi \left( x-\mu \right)}}{\exp\left(\tfrac{-\alpha}{2\left( x-\mu
\right)}\right)}h_{\tfrac{-1}{2}}^{\tfrac{-\alpha}{2\left( x-\mu \right)}},
\end{equation*}